Analysis of dual-channel ICA-based blocking matrix for improved noise estimation
نویسندگان
چکیده
For speech enhancement or blind signal extraction (BSE), estimating interference and noise characteristics is decisive for its performance. For multichannel approaches using multiple microphone signals, a BSE scheme combining a blocking matrix (BM) and spectral enhancement filters was proposed in numerous publications. For such schemes, the BM provides a noise estimate by suppressing the target signal only. The estimated noise reference is then used to design spectral enhancement filters for the purpose of noise reduction. For designing the BM, ‘Directional Blind Source Separation (BSS)’ was already proposed earlier. This method combines a generic BSS algorithm with a geometric constraint derived from prior information on the target source position to obtain an estimate for all interfering point sources and diffuse background noise. In this paper, we provide a theoretical analysis to show that Directional BSS converges to a relative transfer function (RTF)-based BM. The behavior of this informed signal separation scheme is analyzed and the blocking performance of Directional BSS under various acoustical conditions is evaluated. The robustness of Directional BSS regarding the localization error for the target source position is verified by experiments. Finally, a BSE scheme combining Directional BSS and Wiener-type spectral enhancement filters is described and evaluated.
منابع مشابه
Improving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase
Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...
متن کاملA Simulation Study on Binaural Dereverberation and Noise Reduction based on Diffuse Power Spectral Density Estimators
Enhancement techniques in binaural hearing aids are crucial to improve speech understanding for hearing impaired persons in reverberation and noise. Since reverberation and noise can be commonly modeled as diffuse sound fields, many state-of-theart techniques require an estimate of the diffuse power spectral density (PSD). In this paper we evaluate the performance of binaural dereverberation an...
متن کاملJoint Late Reverberation and Noise Power Spectral Density Estimation in a Spatially Homogeneous Noise Field
Many multi-channel dereverberation and noise reduction techniques such as the multi-channel Wiener filter (MWF) require an estimate of the late reverberation and noise power spectral densities (PSDs). State-of-the-art multi-channel methods for estimating the late reverberation PSD typically assume that the noise PSD matrix is known. Instead of assuming that the noise PSD matrix is known, in thi...
متن کاملBlind Channel Estimation Using Wavelet Denoising of Independent Component Analysis for LTE
A new proposal of blind channel estimation method for long term evoluation (LTE) based on combining advantages of denoising property of wavelet transform (WT) with blind estimation capability of independent component analysis (ICA) called wavelet denoising of ICA (WD-ICA) was presented. This new method increased the spectral efficiency compared to training based methods, and provided considerab...
متن کاملSpeech enhancement based on hidden Markov model using sparse code shrinkage
This paper presents a new hidden Markov model-based (HMM-based) speech enhancement framework based on the independent component analysis (ICA). We propose analytical procedures for training clean speech and noise models by the Baum re-estimation algorithm and present a Maximum a posterior (MAP) estimator based on Laplace-Gaussian (for clean speech and noise respectively) combination in the HMM ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- EURASIP J. Adv. Sig. Proc.
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014